Automated Refactoring: Metrics are Not Enough

Chris Simons¹, Jeremy Singer², David White²

¹ Department of Computer Science and Creative Technologies, University of the West of England, Bristol, BS16 1QY, United Kingdom
 chris.simons@uwe.ac.uk

² School of Computing Science, University of the Glasgow, G12 8RZ, United Kingdom
 {jeremy.singer, david.r.white}@glasgow.ac.uk

14 September 2015
Agenda

• Motivation
 • (semi-)automated software refactoring
 • Role of structural metrics in search for refactoring

• Hypotheses

• Experimental Methodology
 • Survey of software development practitioners

• Results
 • Quantitative and qualitative analysis

• Related Work

• Conclusions
Refactoring
Improving the Design of Existing Code

MARTIN FOWLER

With contributions by Kent Beck, John Brant, William Opdyke, and Don Roberts

Foreword by Erich Gamma

All rights reserved.

Published by the Addison-Wesley Professional Computing Series

Addison-Wesley Publishing Company, Redwood City, California

PEARSON EDUCATION
BOSTON NEW DELHI SAN FRANCISCO TOLEDO

Library of Congress Cataloging-in-Publication Data
Fowler, Martin.
Refactoring : improving the design of existing code / Martin Fowler.
p. ; cm.
ISBN 0-201-64380-4
1. Software design. 2. Computer software—Development. I. Title.
Q404 .F69 2000
001'.016--dc21 99-53662
CIP

AC
Software Evolution

As we iteratively engineer software, it must adapt to (changing) requirements...

“If there is one thing of which we can be sure, it is that a system of any substantial size is going to evolve. It is going to evolve even as it is undergoing development. Later, when in use, the changing environment will call for further evolution. ... the system itself should be resilient to change, or change tolerant. Another way of putting this goal is to say that the system should be capable of evolving gracefully.”

natural evolution

i.e. the change in the inherited characteristics of biological populations over successive generations.
Computational Evolution (Search)

Representation of encoded “individual” (solution)
e.g. models, trees, arrays etc. etc.

 initialise population at random
 while(not done)
 evaluate each individual
 select parents
 recombine pairs of parents
 mutate new candidate individuals
 select candidates for next generation
 end while

Evolutionary Fitness Landscape
How old is Evolutionary Computing?

- Kosa (1992)
 - Genetic Programming
- Holland (1975)
 - Genetic Algorithms
- Rechenburg (1973)
 - Evolutionary Strategies
- Fogel et al. (1966)
 - Evolutionary programming (finite state machines)
- Alex Fraser (1957)
 - Computational simulation of natural evolution
- Alan Turin (1952)
 - “Computing Machinery and Intelligence” in *Mind*
 - hints at a “…genetical programming…”

Is evolutionary computing as old as programming??
Some resources available

– Evolving Objects (EO): an Evolutionary Computation Framework (C++)
 • http://eodev.sourceforge.net/
– Open BEAGLE (C++)
 • https://code.google.com/p/beagle/
– ECJ 21 (Java Evolutionary Computation)
 • http://cs.gmu.edu/~eclab/projects/ecj/
– ECF (Evolutionary Computational Computational Framework) (C++)
 • http://gp.zemris.fer.hr/ecf/
– JCLEC – Java Class Library for Evolutionary Computation
 • http://jclec.sourceforge.net/
– Etc. etc.
Motivation (1)

Evolutionary computation extensively applied to various aspects of software development (e.g. requirements, test case generation, architecture, design, programming)

a.k.a. **Search-Based Software Engineering** (SBSE)

Evolutionary computation extensively applied to refactor object-oriented software. Metrics quantify structural properties such as cohesion, coupling, module dependencies, etc.
SBSE refactoring of Apache Ant project does not improve design as assessed by an expert

When SBSE refactoring is conducted using a number of cohesion metrics, there can be disagreement between metrics

Q: What’s the relationship between metrics and design quality?

Q: Qualitatively, how do software engineers make such judgements?

We try to answer these questions, by:
- placing ultimate judgement of software quality with practising software engineers,
- measuring any correlation between metrics used in search and human judgement,
- examining the articulated justifications for those judgements.
Signpost

• Motivation
 • Role of structural metrics in software refactoring

• Hypotheses

• Experimental Methodology
 • Survey of industrial software development practitioners

• Results
 • Quantitative and qualitative analysis reported

• Related Work

• Conclusions
We formulate our hypotheses such that the null hypothesis makes no assumption of an effect:

\[H_0: \text{There is no correlation between software metric values and software engineer evaluation of quality for a given software metric.} \]

\[H_1: \text{There is a correlation between software metric values and software engineer evaluation of quality for a given software metric.} \]
Signpost

• Motivation
 • Role of structural metrics in software refactoring
• Hypotheses

• Experimental Methodology
 • Survey of industrial software development practitioners
• Results
 • Quantitative and qualitative analysis reported
• Related Work
• Conclusions
Experimental Methodology

Three components:

A. Survey Design

B. Questionnaire Design

C. Survey Process
A. Survey Design
A. Survey Design - selection of Software Designs

Balance of meaningful design versus cognitive overload

Two problem domains to strengthen generality of findings
- Automated Teller Machine (ATM)
- Nautical Cruise Booking System

Five experienced software engineers produced class diagrams for each problem domain – 10 diagrams in total – and metric values calculated for each class diagram.

All designs are available at: www.cems.uwe.ac.uk/~clsimons/MetricsAreNotEnough
A. Survey Design - selection of Design Qualities

Quality Model for Object-Oriented Design (QMOOD) relates six design quality attributes to corresponding properties and metrics.

To reduce cognitive load in survey, we focussed on the most problem-domain independent i.e.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reusability</td>
<td>Reflects the presence of object-oriented design characteristics that allow a design to be reapplied to a new problem without significant effort.</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Characteristics that allow the incorporation of changes in a design. The ability of a design to be adapted to provide functionally related capabilities.</td>
</tr>
<tr>
<td>Understandability</td>
<td>The properties of a design that enable it to be easily learned and comprehended. This directly relates to the complexity of the design structure.</td>
</tr>
</tbody>
</table>
A. Survey Design - selection of Metrics

Q: What is the distribution of software metrics among the SBSE refactoring literature?

Search query of “software metrics” in SBSE Repository...

...yielded 57 papers. Excluding non-refactoring sources narrowed the list to 23.

118 different metrics used. Only 3 (LCOM, MQ, EVM) used more than once, and 1 suite (QMOOD) used more than once.

From these, we selected the QMOOD metrics Design Size in Classes (DSC), Direct Class Coupling (DCC) and Numbers of Methods (NOM).

Also selected:
- elegance metric Numbers Among Classes (NAC) (used by Barros & Farzat)
- Numbers of Attributes and Methods (NOAM) (to cater for attributes)
A. Survey Design – Target Population, Sample Frame

Association of C and C++ Users
www.accu.org

- Approx. 900 members via email list

British Computer Society
www.bcs.org

- Approx. 11,000 members via LinkedIn Forum

Many, many thanks to all who responded!!!!
B. Questionnaire Design

Designs presented at random to participants, one model per participant.

Likert Scale used to evaluate designs with seven levels:
- “strongly disagree”, “disagree”, “somewhat disagree”, “neutral”,
- “somewhat agree”, “agree” and “strongly agree”

Informed consent from participants obtained. All survey data strictly confidential and published information reported either as aggregated data or anonymised.

Pretesting conducted with five experienced software engineers.

SurveyGismo used as survey platform.

Questionnaire available at: www.cems.uwe.ac.uk/~clsimons/MetricsAreNotEnough
C. Survey Process

Survey open from 18 January to 28 February 2015.

Participants posted lively comments to the BCS LinkedIn Forum e.g.

“it’s difficult to form an impression of design qualities using a class diagram in isolation of other development aspects e.g. dynamic models of behaviour, requirements, test plan etc.”

One forum contributor remarked:

“it seems that your idea of what quality is and how to judge it is not the same as many of us in the industry”
Signpost

• Motivation
 • Role of structural metrics in software refactoring

• Hypotheses

• Experimental Methodology
 • Survey of industrial software development practitioners

• Results
 • Quantitative and qualitative analysis reported

• Related Work

• Conclusions
Quantitative Results

Anonymised data available

http://www.cems.uwe.ac.uk/~clsimons/MetricsAreNotEnough/

50 responses received

Histogram of number of year’s experience of respondents

Respondents self-assessed expertise in software design and confidence in their ratings
Scatter Plots and Correlation between Human Judgment of Software Qualities and Software Metrics
Spearman’s Rank Coefficients for the Correlation between Metrics and Human Judgement (to 3 s.f.)

<table>
<thead>
<tr>
<th>Quality</th>
<th>DSC</th>
<th>DCC</th>
<th>NOM</th>
<th>NAC</th>
<th>NOAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understandable</td>
<td>-0.128</td>
<td>-0.271</td>
<td>-0.203</td>
<td>-0.0400</td>
<td>0.103</td>
</tr>
<tr>
<td>Reusable</td>
<td>-0.0280</td>
<td>-0.158</td>
<td>-0.195</td>
<td>-0.200</td>
<td>0.0572</td>
</tr>
<tr>
<td>Flexible</td>
<td>0.0386</td>
<td>-0.0806</td>
<td>-0.0677</td>
<td>-0.0613</td>
<td>0.202</td>
</tr>
</tbody>
</table>

P-Values for a Two-Sided Test of the Spearman’s Rank Correlation Coefficients (to 3 s.f.)

<table>
<thead>
<tr>
<th>Quality</th>
<th>DSC</th>
<th>DCC</th>
<th>NOM</th>
<th>NAC</th>
<th>NOAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understandable</td>
<td>0.375</td>
<td>0.0571</td>
<td>0.156</td>
<td>0.783</td>
<td>0.487</td>
</tr>
<tr>
<td>Reusable</td>
<td>0.847</td>
<td>0.272</td>
<td>0.174</td>
<td>0.163</td>
<td>0.693</td>
</tr>
<tr>
<td>Flexible</td>
<td>0.790</td>
<td>0.578</td>
<td>0.640</td>
<td>0.672</td>
<td>0.160</td>
</tr>
</tbody>
</table>
Qualitative Results

We asked the engineers to justify their judgments in prose. We then coded their responses as per Grounded Theory.

<table>
<thead>
<tr>
<th>Coding</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needs something more (dynamics, context, reqts, rationale etc.)</td>
<td>22</td>
</tr>
<tr>
<td>Incorrect or unclear responsibility assignment</td>
<td>13</td>
</tr>
<tr>
<td>Clear traceability to problem domain</td>
<td>10</td>
</tr>
<tr>
<td>Clear breakdown of purpose</td>
<td>6</td>
</tr>
<tr>
<td>Clear element naming</td>
<td>5</td>
</tr>
<tr>
<td>Missing abstractions</td>
<td>4</td>
</tr>
<tr>
<td>No response or no explanation</td>
<td>3</td>
</tr>
<tr>
<td>Poor layout</td>
<td>1</td>
</tr>
</tbody>
</table>

Classifications for Rationale behind Judgment of “Understandable”
<table>
<thead>
<tr>
<th>Coding</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts of the design should be easy to modify</td>
<td>12</td>
</tr>
<tr>
<td>Problem specific</td>
<td>11</td>
</tr>
<tr>
<td>Needs something more (dynamics, context, reqts etc.)</td>
<td>8</td>
</tr>
<tr>
<td>Incorrect or missing abstractions</td>
<td>8</td>
</tr>
<tr>
<td>Class coupling</td>
<td>5</td>
</tr>
<tr>
<td>Incorrect / unclear responsibility assignment</td>
<td>2</td>
</tr>
<tr>
<td>Separation of concerns</td>
<td>2</td>
</tr>
<tr>
<td>Hard to test</td>
<td>1</td>
</tr>
<tr>
<td>Simplistic</td>
<td>1</td>
</tr>
<tr>
<td>No response / no clear explanation</td>
<td>8</td>
</tr>
</tbody>
</table>

Classifications for Rationale behind Judgment of “Flexible”
<table>
<thead>
<tr>
<th>Coding</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem specific</td>
<td>24</td>
</tr>
<tr>
<td>Parts of the design are reusable, others not</td>
<td>18</td>
</tr>
<tr>
<td>Class coupling</td>
<td>5</td>
</tr>
<tr>
<td>Needs something more (dynamics, context, reqts etc.)</td>
<td>5</td>
</tr>
<tr>
<td>Incorrect abstractions</td>
<td>3</td>
</tr>
<tr>
<td>Lack of object-oriented design</td>
<td>2</td>
</tr>
<tr>
<td>Separation of concerns</td>
<td>2</td>
</tr>
<tr>
<td>OO languages</td>
<td>1</td>
</tr>
<tr>
<td>Simplistic</td>
<td>1</td>
</tr>
<tr>
<td>No response</td>
<td>1</td>
</tr>
</tbody>
</table>

Classifications for Rationale behind Judgment of “Reuseable”
We make the following observations:

A class diagram is *not enough*

The Problem Domain *matters*

Qualities have meaning *only in a given context*

Good design is *intuitive*

Our standard metrics *play a minor part*
Signpost

• Motivation
 • Role of structural metrics in software refactoring
• Hypotheses
• Experimental Methodology
 • Survey of industrial software development practitioners
• Results
 • Quantitative and qualitative analysis reported
• Related Work
• Conclusions
Program Complexity Metrics and Programmer Opinions

Bernhard Katzmarski, Rainer Koschke
Fachbereich Mathematik und Informatik
University of Bremen
Bremen, Germany
{bkatzm,koschke}@tzi.de

Abstract—Various program complexity measures have been proposed to assess maintainability. Only relatively few empirical studies have been conducted to back up these assessments through empirical evidence. Researchers have mostly conducted controlled experiments or correlated metrics with indirect maintainability indicators such as defects or change frequency.

This paper uses a different approach. We investigate whether metrics agree with complexity as perceived by programmers. We show that, first, programmers’ opinions are quite similar and, second, only few metrics and in only few cases reproduce complexity rankings similar to human raters. Data-flow metrics seem to better match the viewpoint of programmers than control-flow metrics, but even they are only loosely correlated. Moreover we show that a foolish metric has similar or sometimes even better correlation than other evaluated metrics, which raises the question how meaningful the other metrics really are.

In addition to these results, we introduce an approach and associated statistical measures for such multi-rater investigations. Our approach can be used as a model for similar studies.

Index Terms — control-flow metrics, data-flow metrics, program complexity

yet the mean of all estimates was accurate to a fraction of one percent. This anecdote has lead to the notion of wisdom of crowds and crowd sourcing.

That is not to say that we claim the so-called wisdom of crowds emerges also when it comes to assessing program complexity. Rather we view questionnaires as a research instrument complementary to other instruments. While others have focused mostly on other research instruments, we would like to explore whether and how questionnaires can be used. Furthermore, subjective assessment by questionnaires is at least useful to generate operational hypotheses, which can later be assessed by controlled experiments.

Contributions. Our new contributions are two-fold. First, we investigate the question whether control and data-flow metrics can be used to assess program complexity as gathered from developer opinions. Second, our research approach can be used as a model for investigations based on questionnaires. We discuss and show how methods and statistics from behavioral sciences may be adapted to program-understanding.
two never correlate. The results suggest that DepDeg reflects programmers’ opinions slightly better than Cyc/Compl.

It is interesting to see that the very simple data-flow approximation NOES performs similarly to the other evaluated data-flow metrics that are much more expensive to compute. Likewise, the fact that the meaningless metric Foo has such a high accordance questions the accordance of the other metrics.

V. THREATS TO VALIDITY

We have already noted that questionnaires are subjective. This section discusses additional threats to validity.

We used convenience sampling to gather participants by sending out e-mails to colleagues – the vast majority working in academia. Many of them distributed the questionnaire to their students. Consequently, most participants are from academia. Professional programmers might judge differently. However, many of the participants had substantial programming experience.

Although we collected a high number of ratings, only half of them are consistent. This high degree of inconsistency may partly arise from problems in the experimental design and implementation. For instance, one participant complained he did not find a way to go back and correct his false rating. It may be the case that inconsistent ratings come from these accidentally false ratings. Despite removing inconsistent ratings from the study, we still had more than 200 ratings.

Our results are based on methods implemented in Java. Although we excluded language features special to Java, it is not quite clear how results apply to other programming languages. Furthermore, methods were small (12-51 lines of code) to limit the influence of size and we ignored interprocedural flows and object-oriented design aspects, which may have a greater impact on comprehension. That is, we evaluated only a limited

We used convenience sampling to gather participants by sending out e-mails to colleagues – the vast majority working in academia. Many of them distributed the questionnaire to their students. Consequently, most participants are from academia. Professional programmers might judge differently.
two never correlate. The results suggest that DepDeg reflects programmers' opinions slightly better than CycCompl.

It is interesting to see that the very simple data-flow approximation NOES performs similarly to the other evaluated data-flow metrics that are much more expensive to compute. Likewise, the fact that the meaningless metric Foo has such a high accordance questions the accordance of the other metrics.

V. Threats to validity

We have already noted that questionnaires are subjective. This section discusses additional threats to validity.

We used convenience sampling to gather participants by sending out e-mails to colleagues – the vast majority working in academia. Many of them distributed the questionnaire to their students. Consequently, most participants are from academia. Professional programmers might judge differently.

However, many of the participants had substantial programming experience.

Although we collected a high number of ratings, only half of them are consistent. This high degree of inconsistency may partly arise from problems in the experimental design and implementation. For instance, one participant complained he did not find a way to go back and correct his false rating. It may be the case that inconsistent ratings come from these accidentally false ratings. Despite removing inconsistent ratings from the study, we still had more than 200 ratings.

Our results are based on methods implemented in Java. Although we excluded language features special to Java, it is not entirely clear how results apply to other programming languages. Furthermore, methods were small (10-51 lines of code) to limit the influence of size and interprocedural flows and object-oriented design patterns which may have a greater impact on comprehension.

Although we collected a high number of ratings, only half of them are consistent. This high degree of inconsistency may partly arise from problems in the experimental design and implementation. For instance, one participant complained he did not find a way to go back and correct his false rating. It may be the case that inconsistent ratings come from these accidentally false ratings. Despite removing inconsistent ratings from the study, we still had more than 200 ratings.
two never correlate. The results suggest that DepDep reflects programmers’ opinions slightly better than CyclCompl.

It is interesting to see that the very simple data-flow approximation NOES performs similarly to the other evaluated data-flow metrics that are much more expensive to compute. Likewise, the fact that the meaningless metric Fox has such a high accordance questions the accordance of the other metrics.

V. Threats to Validity

We have already noted that questionnaires are subjective. This section discusses additional threats to validity.

We used convenience sampling to gather participants by sending out e-mails to colleagues – the vast majority working in academia. Many of them distributed the questionnaire to their students. Consequently, most participants are from academia. Professional programmers might judge differently. However, many of the participants had substantial programming experience.

Although we collected a high number of ratings, only half of them are consistent. This high degree of inconsistency may partly arise from problems in the experimental design and implementation. For instance, one participant complained he did not find a way to go back and correct his false rating. It may be the case that inconsistent ratings come from these accidentally false ratings. Despite removing inconsistent ratings from the study, we still had more than 200 ratings.

Our results are based on methods implemented in Java. Although we excluded language features special to Java, it is not quite clear how results apply to other programming languages. Furthermore, methods were small (12-51 lines of code) to limit the influence of size and we ignored interprocedural flows and object-oriented design aspects, which may have a greater impact on comprehension. That is, we evaluated only a limited
Experimental Assessment of Software Metrics Using Automated Refactoring

Mel Ó Cinnéide
School of Computer Science
and Informatics
University College Dublin
mel.ocinneide@ucd.ie

Laurence Tratt
Dept. of Informatics
King’s College London
laurie@tratt.net

Mark Harman
Dept. of Computer Science
University College London
mark.harman@ucl.ac.uk

Steve Counsell
Dept. of Information Systems
and Computing
Brunel University
steve.counsell@brunel.ac.uk

Iman Hemati Moghadam
School of Computer Science
and Informatics
University College Dublin
Iman.Hemati-Moghadam@ucdconnect.ie

ABSTRACT

A large number of software metrics have been proposed in the literature, but there is little understanding of how these metrics relate to one another. We propose a novel experimental technique, based on search-based refactoring, to assess software metrics and to explore relationships between them. Our goal is not to improve the program being refactored, but to assess the software metrics that guide the automated refactoring through repeated refactoring experiments. We apply our approach to five popular software metrics to determine if they measure the same software quality compared to one another. Can metrics that measure the same property disagree, and how strongly can they disagree? These questions are important, because we cannot rely on a suite of metrics to assess properties of software if we cannot determine the extent to which they agree or have any way to determine them. Our goal is not to improve the program being refactored, but to assess the software metrics that guide the automated refactoring through repeated refactoring experiments.
Experimental Assessment of Software Metrics Using Automated Refactoring

We apply our approach to five popular cohesion metrics using eight real-world Java systems, involving 300,000 lines of code and over 3,000 refactorings. Our results demonstrate that cohesion metrics disagree with each other in 55% of cases, and show how our approach can be used to reveal novel and surprising insights into the software metrics under investigation.

A large number of software metrics have been proposed in the literature, but there is little understanding of how these metrics relate to one another. We propose a novel experimental technique, based on automated refactoring, to assess software metrics and to explore relationships between them. Our goal is not to improve the program being refactored, but to assess the software metrics that guide the automated refactoring through repeated refactoring experiments.

We apply our approach to five popular cohesion metrics using eight real-world Java systems, involving 300,000 lines of code and over 3,000 refactorings. Our results demonstrate that cohesion metrics disagree with each other in 55% of cases, and show how our approach can be used to reveal novel and surprising insights into the software metrics under investigation.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Complexity measures; D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhancement—Restructuring, reverse engineering, and reengineering
An experimental investigation on the innate relationship between quality and refactoring

Gabriele Bavotaa,*, Andrea De Luciab, Massimiliano Di Pentac, Rocco Olivetod, Fabio Palombab

a Free University of Bozen-Bolzano, Bolzano, Italy
b University of Salerno, Fisciano (SA), Italy
c University of Sannio, Benevento, Italy
d University of Molise, Pesche (IS), Italy

\begin{abstract}
Previous studies have investigated the reasons behind refactoring operations performed by developers, and proposed methods and tools to recommend refactoring based on quality metric profiles, or on the presence of poor design and implementation choices, i.e., code smells. Nevertheless, the existing literature lacks observations about the relations between metrics/code smells and refactoring activities performed by developers. In other words, the characteristics of code components increasing/decreasing their chances of being object of refactoring operations are still unknown. This paper aims at bridging this gap. Specifically, we mined the evolution history of three Java open source projects to investigate whether refactoring activities occur on code components for which certain indicators—such as quality metrics or the presence of smells as detected by tools—suggest there might be need for refactoring operations. Results indicate that, more often than not, quality metrics do not show a clear relationship with refactoring. In other words, refactoring operations are generally focused on code components for which quality metrics do not suggest there might be need for refactoring operations. Finally, 42% of refactoring operations are performed on code entities affected by code smells. However, only 7% of the performed operations actually remove the code smells from the affected class.
\end{abstract}
The results achieved can be summarized as follows:

1. More often than not, quality metrics do not show a clear relationship with refactoring. In other words quality metrics might suggest classes as good candidates to be refactored that are generally not involved in developers’ refactoring operations.

2. Among the 12,922 refactoring operations analyzed, 5425 are performed by developers on code smells (42%). However, of these 5425 only 933 actually remove the code smell from the affected class (7% of total operations) and 895 are attributable to only four code smells (i.e., Blob, Long Method, Spaghetti Code, and Feature Envy). Thus, not all code smells are likely to trigger refactoring activities.
In summary, such results suggest that (i) more often than not refactoring actions are not a direct consequence of worrisome metric profiles or of the presence of code smells, but rather driven by a general need for improving maintainability, and (ii) refactorings are mainly attributable to a subset of known smells. For all these reasons, the refactoring recommendation tools should not only base their suggestions on code characteristics, but they should consider the developer’s point-of-view in order to propose meaningful suggestions of classes to be refactored.

Received 8 April 2015
Revised 8 May 2015
Accepted 12 May 2015
Available online 21 May 2015

Keywords:
Refactoring
Code smells
Empirical study

Previous studies have investigated the reasons behind refactoring operations performed by developers, and proposed methods and tools to recommend refactorings based on quality metric profiles, or on the presence of poor design and implementation choices, i.e., code smells. Nevertheless, the existing literature lacks observations about the relations between metrics/code smells and refactoring activities performed by developers. In other words, the characteristics of code components increasing/decreasing their chances of being object of refactoring operations are still unknown. This paper aims at bridging this gap. Specifically, we mined the evolution history of three Java open source projects to investigate whether refactoring activities occur on code components for which certain indicators—such as quality metrics or the presence of smells as detected by tools—suggest there might be need for refactoring operations. Results indicate that, more often than not, quality metrics do not show a clear relationship with refactoring. In other words, refactoring operations are generally focused on code components for which quality metrics do not suggest there might be need for refactoring operations. Finally, 42% of refactoring operations are performed on code entities affected by code smells. However, only 7% of the performed operations actually remove the code smells from the affected class.

© 2015 Elsevier Inc. All rights reserved.
Our Threats to Validity

Class models are small:
 constrained by cognitive overload and screen space

Participant understanding of qualities:
 we provided definitions and navigation to revisit

Bias of target population and sample frame:
 (as with any survey)
 targeted professional institutions and practitioners

Pilot survey could have been more extensive
Signpost

• Motivation
 • Role of structural metrics in software refactoring
• Hypotheses
• Experimental Methodology
 • Survey of industrial software development practitioners
• Results
 • Quantitative and qualitative analysis reported
• Related Work

• Conclusions
Conclusions (1)

Refactoring metrics are not correlated with human engineer judgement

Unable to refute the null hypothesis; thus unable to support conjecture that refactoring tools relying solely on these metrics will consistently propose useful refactored models to engineers.
Conclusions (2) – wider lessons

Simple metrics are not able to entirely capture essential qualities of software design used by human engineers.

Software is inextricably connected to a problem domain.

We note recent advances in machine learning and automatic programming to address such concerns...

...but without their inclusion, human-in-the-loop automated refactoring systems may be required for meaningful solutions.
Automated Refactoring: Metrics are Not Enough

questions?

@chrislsimons
chris.simons@uwe.ac.uk

@jsinger_compsci
jeremy.singer@glasgow.ac.uk

@davidwhitecs
david.r.white@glasgow.ac.uk